An extended equation sheet for AS and A2 revision. Not all equations are provided in the booklet during exams.
Jump to sections:
[AS Chapters][A2 Chapters]
AS Ch1 Physical Units and Quantities
- All 2D vectors can be broken down into two components, right angles to each other.
- Horizontal vector component, Fx=Fcosθ
- Vertical vector component, Fy=Fsinθ
- To recombine vector components, F=√F2x+F2y
- Fractional uncertainty = absolute uncertaintymeasurement=Δxx
- Percentage uncertainty = Δxx×100 %
- If p=x3y127z4, then percentage uncertainty p is ±(3Δx)+(12Δy)+(4Δz)%
- ... and fractional uncertainty Δpp=3Δxx+12Δyy+4Δzz
AS Ch2 Kinematics
- Displacement, s = area under v-t graph
- Velocity, v=ΔsΔt= gradient of s-t graph
- Acceleration, a=ΔvΔt= gradient of v-t graph
- v=u+at
- s=12(u+v)t
- s=ut+12at2
- v2=u2+2as
- Projectile components if θ is elevation: Vx=vcosθ and Vy=vsinθ
- Projectile max vertical height, H=u2sin2θ2g
- Projectile max horizontal range, R=u2sin2θg
AS Ch3 Dynamics
- Momentum, p=mv
- Force causes acceleration, ΣF=ΔpΔt=ma (2nd law)
- Impulse, FΔt=Δ(mv)
- Total momentum, m1u1+m2u2=m1v1+m2v2
- Elastic collisions u1−u2=v2−v1 (leftward is negative, rightward is positive)
- Weight, W=mg
AS Ch4 Forces, Density, Pressure
- Gravitational force, Fg=mg
- Electrostatic force, Fe=qE
- Friction, Ff=μR
- Drag or viscous force, FD∝v2
- Moment of force/torque =F×d⊥=F⊥×d
- Density, ρ=massvolume=mV
- Pressure (Pa), P=ForceArea=FA
- Pressure in fluids, ΔP=ρgΔh
- Upthrust force, Fup=ρVg
- Equilibrium in fluid ρVg=mg
AS Ch5 Work, Energy, Power
- Work Done (J), W=force×distance=Fscosθ
- Gravitational Potential Energy Ep=mgh
- Kinetic Energy Ek=12mv2
- Elastic potential energy Ep=12Fx=12kx2
- Electric potential energy in uniform electric field, Ep=qEd
- Work done expanding gas, W=PΔV
- Efficiency (%), η=power or energy outputpower or energy input×100
- Power (W), P=work done or energy changetime taken=Wt=Fv
AS Ch6 Deformation of Solids
- Restoring force (Hooke's Law), F=kΔx
- Parallel springs effective constant k=k1+k2+...
- Series springs effective constant 1k=1k1+1k2+...
- Elastic potential or strain energy Es=12Fx=12kx2
- Work done on spring W=ΔEs= area under F-x graph
- Stress (Pa), σ=force appliedcross-section area=FA
- Strain, ϵ=extensionoriginal length=xl0
- Young's modulus (Pa), E=stressstrain=σϵ=Fl0Ax = Gradient of linear stress-strain graph
- Strain energy per unit volume = Area under stress-strain graph
AS Ch7 Waves
- Frequency (Hz), f=one cycleperiod=1T
- Wave speed, v=fλ
- Phase difference ratios ΔtT=Δxλ=Δθ2π
- Wave intensity, I∝A2 and I∝f2 and I∝1r2
- Doppler effect ratios, f0fs=vv±vs (positive away, negative towards)
- Malus' Law of Polarized intensity, I=Iocos2θ [2022 syllabus]
AS Ch8 Superposition of Waves
- Path difference, ΔL=L2−L1=asinθ
- For constructive interference ΔL=0,1λ,2λ,3λ,...nλ
- For destructive interference ΔL=0.5λ,1.5λ,2.5λ,...(n+12)λ
- Young's double-slit fringe separation, x=λDa
- Multi-slit diffraction grating, nλ=dsinθ (observing maxima)
- Grating slit separation, d=1N (e.g. N = 30000 lines/metre)
- To find greatest number of maxima n, use nλ<dsin90
AS Ch9 Current of Electricity
- Total charge (C) of free electrons = Q=nALe
- Current (A), I=totalchargetimetaken =Qt=naLqt=nAvq
- Potential difference aka voltage (V), V=energycharge=WQ
- Resistance (Ω), R=VI= constant (if obeys Ohms's Law)
- Resistance in wire (Ω m), R=ρLA
- Power (W), P=IV=I2R=V2R
- Max Power Dissipated, Pmax=E2R(R+r)2
AS Ch10 DC Circuits
- e.m.f (V) from battery, E=IR+Ir= terminal p.d. + lost volts
- Combined Series Resistance, R=R1+R2+R3+...
- Combined Parallel Resistance, R=(1R1+1R2+1R3+...)−1
- Kirchoff I: At a junction, total current in = total current out
- Kirchoff II: For loop in circuit, ∑V=0 or sum of e.m.f = sum of potential drops
- Potential divider (ratio), V1V2=R1R2 or V1Vcell=R1Rtotal
- Potentiometre output p.d. (ratio), VoVs=(xl)
- Potentiometre to find emf (ratio), EV0=(xl)
- Strain gauge ratio if no change in area ΔRR=ΔLL, but if changing area but constant volume then ΔRR=2ΔLL
AS Ch11 Particle and Nuclear Physics
- Alpha decay 10010X⟶968Y+42α
- Beta-minus decay 10010X⟶10011Y+0−1β+¯νe
- Beta-plus decay 10010X⟶1009Y+01β+νe
- Gamma decay 10010X⟶10010Y+γ
Jump to sections:
[AS Chapters][A2 Chapters]
= = = = = = = = = = = = = = = = = = =
A2 Practical Paper 5
- General uncertainty, Δx=12(xmax−xmin)
- Absolute unc. gradient, Δm=|mbest−mworst|
- Absolute unc. y-intercept ΔC=|Cbest−Cworst|
- General log uncertainty, Δloga(x)=1ln(a)(Δxx)
- Absolute uncertainty of lg, Δlg(x)=1ln(10)(Δxx)
- Absolute uncertainty of ln, Δln(x)=Δxx
A2 Ch12 Circular Motion
- Arc length, s=rθ (definition of radian)
- Angular velocity, ω=ΔθΔt=2πt=2πf
- Average speed or linear/tangential velocity, v=rω
- Period of revolution, T=2πω=2πrv
- Centripetal acceleration, a=vw=rω2=v2r
- Centripetal force, Fc=ma=mrω2=mv2r
A2 Ch13 Gravitation / Gravitational Fields (G-field)
- Gravitational force of attraction, F=GMmr2
- G-field strength, g=GMr2
- Gravitational potential, ϕ=−GMr
- G-potential energy, Eg=mϕ=−GMmr
- Orbital velocity, v=√GMr
- Orbital period, T=2πrv=2π√r3GM
- Escape velocity, vescape=√2GMR
A2 Ch14 Temperature & Thermal Properties
- Conversion: T/K = T/°C + 273.15
- Heat energy to raise liquid temperature, Q=mcΔθ+Qlost
- Energy supplied by heater, Q=VIt
- Internal energy, U=sum of random distribution of K.E. and P.E of molecules
- Change in internal energy, ΔU=q+W
where +q is heat supplied to system, +W is work done on system (V decrease). - Internal energy of ideal gas, U=Ek=32kT (no potential energy)
A2 Ch15 Ideal Gases
- State for ideal gas PV=nRT=NkT
- Amount of gas (mol), n=Number of Particles,NAvogadro Constant,NA
- Boltzmann constant, k=Molar gas constant,RAvogadro constant,NA
- Boyle's Law P∝1V (constant T)
- Charles' Law V∝T (constant P)
- Pressure Law P∝T (constant V)
- Combined laws PVT=constant
A2 Ch16 Thermodynamics
- Pressure of gas P=13(NmV)⟨c2⟩=13ρ⟨c2⟩
NOTE: m is mass of a single particle! - Kinetic energy of gas molecule ⟨Ek⟩=12m⟨c2⟩=32kT
- Internal energy of ideal gas, U=Ek=32kT (no potential energy)
A2 Ch17 Oscillations / Simple Harmonic Motion (SHM)
- Angular frequency, ω=2πT=2πf
- Period of a spring, T=2π√mk
- Period of a pendulum, T=2π√lg
- SHM acceleration, a=−ω2x
- Max acc. at max displacement (x=A), a=−ω2A
- SHM velocity, v=±ω√A2−x2
- Max speed at equilibrium (x=0), vmax=ωA
- E.g. if displacement is x=Asinωt then velocity is v=ωAcosωt
- Total energy ET=12mv2+12kx2
- Trigonometric identity sin2ωt+cos2ωt=1
A2 Ch18 Electric Fields (E-field)
- Constant k=14πϵo
- Electric potential (J/C), V=kQr
- E-field strength, E=−dVdr=kQr2
- E-field parallel plates, E=FQ=Vd
- Electric force Fe=qE=kQqr2
- E-potential energy, U=−∫Fedr=kQqr=qV
- Work done (J) on charge, W=Fd=ΔU=qΔV
- Uniform E-field strength, E=−potential gradient=−dVdr=−ΔVΔx
A2 Ch19 Capacitance
- Capacitance (F), C=QV
- Combined Parallel Capacitance, C=C1+C2+C3+...
- Combined Series Capacitance, C=(1C1+1C2+1C3+...)−1
- Energy stored in capacitors, E=12QV=12CV2
- Current (A), I=totalchargetimetaken =Qt
- Discharging capacitor charge, Q=Qoe−tRC
- Charging capacitor charge, Q=Qo(1−e−tRC)
A2 Ch20 Magnetic Fields & Induction
- Field from a straight wire, B=μoI2πr
- Field inside solenoid, B=μoNIL
- Force on wire in field, F=BILsinθ
- Force per unit length between two wires, FL=μoI1I22πx
- Force on charged particle, F=Bqvsinθ
- Hall voltage, VH=BIdnAq=BIntq
- Current (A), I=totalchargetimetaken =Qt=nAvq
- Magnetic flux (Wb), Φ=BA
- Induced e.m.f, E=Blv=BdAdt
- Faraday's Law E=−dΦdt=−ΔNΦΔt
A2 Ch21 Alternating Currents (AC)
- Root-mean-square current, Irms=Io√2
- Root-mean-square voltage , Vrms=Vo√2
- Max power, Pmax=IoVo
- Average power, Pavg=IrmsVrms=12IoVo
- Oscillating current. I=Iosin(2πft)=Iosinωt
- Oscillating voltage, V=Vosin(2πft)=Vosinωt
- Oscillating Power, P=IV=VoIo2[1−cos(4πft)]
- Ideal transformer VsVp=NsNp=IpIs
A2 Ch22 Quantum Physics
- Energy of a photon, E=hf=hcλ
- Max k.e. of photoelectrons EK(max)=hf−ϕ
- Radiation intensity =hfNAt so I∝fphotonsNphotons
- Work function energy, ϕ=hfo=hcλo
- Threshold frequency, fo=ϕh
- Threshold wavelength, λo=cfo
- De Broglie wavelength, λ=hp=hmv
- Emitted photon energy, ΔE=E1−E2=hf
A2 Ch23 Nuclear Physics
- Energy released. ΔE=(Δm)c2
- Mass excess = mass (in u) - nucleon number
- Number of nuclei, N=Noeλt
- Radioactivity, A=Aoe−λt=dNdt=−λN
- Half-life duration, t1/2=ln2λ=0.693λ
- Mass, m=moles×molecular weight
- Number of particles, N=moles×NA
A2 Ch24 Medical: Ultrasound
- Acoustic impedance, Z=ρc
- Intensity reflection coefficient IRIO=(Z1−Z2)2(Z1+Z2)2
- Wave intensity in material, I=I0e−μx
- Decibel (dB) = 10log10(I2I1)
A2 Ch24 Medical: X-Ray
- X-ray photon max frequency hfmax=eV
- X-ray attenuation I=Ioe−μx
- Decibel (dB) = 10log10(I2I1)
A2 Ch25 Astronomy & Cosmology
- Radiant flux intensity, F=L4πd2
- Wien's blackbody radiation, λpeak∝1T
- Stefan-Boltzmann's stellar radii, L=4πσr2T4
- Doppler Shift λstarλlab=vc
- Hubble's Law v=H0d
Jump to sections:
[AS Chapters][A2 Chapters]
=================
Discontinued Chapters:
A2 Communications
- Bandwidth =(fc+fs)−(fc−fs)=2fs
NOTE: Maximum frequency of signal = fs - Bitrate = sample rate × bit depth
- Attenuation (dB) = 10log10(P1P2)
- Gain (dB) = 10log10(PoutPin)
A2 Electronics (Op-Amp)
- Gain, G=VoutVin
- Output voltage, Vout=G(V+−V−)
- Voltage gain (inverting), VoutVin=−RFRin
- Voltage gain (non-inverting), VoutVin=1+RfRin