Equations

An extended equation sheet for AS and A2 revision. Not all equations are provided in the booklet during exams. 

Jump to sections:
[AS Chapters][A2 Chapters

 

AS Ch1 Physical Units and Quantities

  • All 2D vectors can be broken down into two components, right angles to each other.
  • Horizontal vector component, \(F_x = F \cos \theta   \)
  • Vertical vector component, \(F_y = F \sin \theta \)
  • To recombine vector components, \(F = \sqrt{F_x^2 + F_y^2} \)
  • Fractional uncertainty = \( \frac{\textrm{absolute uncertainty}}{\textrm{measurement}} = \dfrac{\Delta x}{x} \) 
  • Percentage uncertainty = \( \dfrac{\Delta x}{x} \times 100\) %
  • If \( p=\dfrac{x^{3} y^\frac{1}{2}}{7z^4} \), then percentage uncertainty p is \( \pm \;  (3 \Delta x) + (\frac{1}{2}  \Delta y) + (4 \Delta z) \)%
  • ... and fractional uncertainty \(\frac{\Delta p}{p} = 3\frac{\Delta x}{x} + \frac{1}{2}\frac{\Delta y}{y} +4 \frac{\Delta z}{z}  \)

AS Ch2 Kinematics

  • Displacement, s = area under v-t graph 
  • Velocity, \(v= \dfrac{\Delta s}{\Delta t}=\) gradient of s-t graph 
  • Acceleration, \(a=\dfrac{\Delta v}{\Delta t}=\) gradient of v-t graph 
  • \(v=u+at\)
  • \(s=\frac{1}{2}(u+v)t\) 
  • \(s=ut+\frac{1}{2} at^2\) 
  • \(v^2 = u^2 + 2as\) 
  • Projectile components if \(\theta\) is elevation: \(V_x = v \cos\theta\) and \(V_y = v \sin\theta\) 
  • Projectile max vertical height, \(H=\frac{u^2 \sin^2 \theta}{2g}\) 
  • Projectile max horizontal range, \(R=\frac{u^2 \sin 2\theta}{g}\) 

AS Ch3 Dynamics

  • Momentum, \(p=mv\)
  • Force causes acceleration, \(\Sigma F= \dfrac{\Delta p}{\Delta t}=ma\) (2nd law)
  • Impulse, \(F \Delta t = \Delta(mv)\)
  • Total momentum, \(m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2\)
  • Elastic collisions \(u_1 - u_2 = v_2 - v_1 \) (leftward is negative, rightward is positive)
  • Weight, \(W=mg\)

AS Ch4 Forces, Density, Pressure

  • Gravitational force, \(F_{g}=mg\)
  • Electrostatic force, \(F_{e}=qE\)
  • Friction, \(F_{f}= \mu R\)
  • Drag or viscous force,  \(F_D \propto v^2\)
  • Moment of force/torque \(= F \, \times d_{\perp} = F_{\perp} \times d\)
  • Density, \( \rho = \frac{\textrm{mass}}{\textrm{volume}} = \dfrac{m}{V} \)
  • Pressure (Pa), \( P=\frac{\textrm{Force}}{\textrm{Area}}=\dfrac{F}{A}\)
  • Pressure in fluids, \(\Delta P = \rho g \Delta h \)
  • Upthrust force, \(F_{up}= \rho V g\) 
  • Equilibrium in fluid \( \rho V g = mg\)

 AS Ch5 Work, Energy, Power

  • Work Done (J), \(W = force \times distance = Fs \cos \theta\)
  • Gravitational Potential Energy \(E_p = mgh\)
  • Kinetic Energy \(E_k = \frac{1}{2} mv^2\)
  • Elastic potential energy \(E_p = \frac{1}{2} Fx = \frac{1}{2} kx^2\)
  • Electric potential energy in uniform electric field, \(E_p= qEd\)
  • Work done expanding gas, \( W = P \Delta V \)
  • Efficiency (%), \( \eta = \frac{\textrm{power or energy output}}{\textrm{power or energy input}} \times 100 \)
  • Power (W), \(P =\frac{\textrm{work done or energy change}}{\textrm{time taken}}= \dfrac{W}{t} = Fv \)

AS Ch6 Deformation of Solids

  • Restoring force (Hooke's Law), \(F=k \; \Delta x\)
  • Parallel springs effective constant \(k = k_1 + k_2 + ... \)
  • Series springs effective constant \(\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + ...\)
  • Elastic potential or strain energy \(E_s = \frac{1}{2} Fx = \frac{1}{2} kx^2\)
  • Work done on spring \(W = \Delta E_s =\) area under F-x graph
  • Stress (Pa), \(\sigma = \frac{\textrm{force applied}}{\textrm{cross-section area}} = \dfrac{F}{A}\)
  • Strain, \(\epsilon = \frac{\textrm{extension}}{\textrm{original length}} = \dfrac{x}{l_0}\)
  • Young's modulus (Pa), \(E = \frac{\textrm{stress}}{\textrm{strain}} = \dfrac{\sigma}{\epsilon} = \dfrac{Fl_0}{Ax}\) = Gradient of linear stress-strain graph
  • Strain energy per unit volume = Area under stress-strain graph

AS Ch7 Waves

  • Frequency (Hz), \(f=\frac{\textrm{one cycle}}{\textrm{period}} = \dfrac{1}{T}\)
  • Wave speed, \( v=f\lambda \)
  • Phase difference ratios \(\dfrac{\Delta t}{T} = \dfrac{\Delta x}{\lambda} = \dfrac{\Delta \theta}{2\pi} \)
  • Wave intensity, \( I \propto A^2 \) and \( I \propto f^2 \) and \( I \propto \frac{1}{r^2} \)
  • Doppler effect ratios, \( \dfrac{f_0}{f_s} = \dfrac{v}{v \pm v_s}   \) (positive away, negative towards)
  • Malus' Law of Polarized intensity, \(I = I_o \cos^2 \theta\) [2022 syllabus]

AS Ch8 Superposition of Waves

  • Path difference, \(\Delta L = L_2 - L_1 = a \sin \theta \)
  • For constructive interference \(\Delta L = 0,\; 1\lambda, \; 2\lambda,\; 3\lambda,...  n\lambda \)
  • For destructive interference \(\Delta L = 0.5\lambda,\; 1.5\lambda,\; 2.5\lambda,...  (n+\frac{1}{2})\lambda \)
  • Young's double-slit fringe separation, \( x=\dfrac{\lambda D}{a} \)
  • Multi-slit diffraction grating, \( n \lambda = d \sin \theta \) (observing maxima)
  • Grating slit separation, \( d = \dfrac{1}{N} \) (e.g. N = 30000 lines/metre)
  • To find greatest number of maxima n, use \( n \lambda < d \sin 90 \)

AS Ch9 Current of Electricity

  • Total charge (C) of free electrons = \(Q = nALe \) 
  • Current (A), \(I = \frac{total \; charge \;}{time \; taken}\ = \dfrac{Q}{t} = \dfrac{naLq}{t} = nAvq \)
  • Potential difference aka voltage (V), \( V = \frac{\textrm{energy}}{\textrm{charge}} = \dfrac{W}{Q} \)
  • Resistance (\( \Omega \)), \( R=\dfrac{V}{I}=\) constant (if obeys Ohms's Law)
  • Resistance in wire (\(\Omega\) m), \( R=\dfrac{\rho L}{A} \)
  • Power (W), \( P=IV = I^2R = \dfrac{V^2}{R} \)
  • Max Power Dissipated, \(P_{max} = \dfrac{E^2 R}{(R+r)^2}\)

AS Ch10 DC Circuits

  • e.m.f (V) from battery, \(E =  IR + Ir =\) terminal p.d. + lost volts
  • Combined Series Resistance, \( R = R_1 + R_2 + R_3 + ... \)
  • Combined Parallel Resistance, \( R = \left( \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3} + ...\right)^{-1} \)
  • Kirchoff I: At a junction, total current in = total current out
  • Kirchoff II: For loop in circuit, \( \sum V = 0 \) or  sum of e.m.f = sum of potential drops
  • Potential divider (ratio), \( \dfrac{V_1}{V_2} = \dfrac{R_1}{R_2} \) or \( \dfrac{V_1}{V_{cell}} = \dfrac{R_1}{R_{total}} \)
  • Potentiometre output p.d. (ratio), \( \frac{V_o}{V_s} = \left(\dfrac{x}{l} \right)  \)
  • Potentiometre to find emf (ratio), \( \frac{E}{V_0}= \left(\dfrac{x}{l} \right) \)
  • Strain gauge ratio if no change in area \(\dfrac{\Delta R}{R} = \dfrac{\Delta L}{L} \), but if changing area but constant volume then \(\dfrac{\Delta R}{R} = \dfrac{2 \Delta L}{L} \)

AS Ch11 Particle and Nuclear Physics

  • Alpha decay \( {}_{10}^{100}\text{X} \longrightarrow {}_{8}^{96}\text{Y} + {}_{2}^{4} \alpha \)
  • Beta-minus decay \( {}_{10}^{100}\text{X} \longrightarrow {}_{11}^{100}\text{Y} + {}_{-1}^{0} \beta + \overline{\nu}_e \) 
  • Beta-plus decay \( {}_{10}^{100}\text{X} \longrightarrow {}_{9}^{100}\text{Y} + {}_{1}^{0} \beta + \nu_e  \)  
  • Gamma decay \( {}_{10}^{100}\text{X} \longrightarrow {}_{10}^{100}\text{Y} + \gamma \)



Jump to sections:
[AS Chapters][A2 Chapters

  = = = = = = = = = = = = = = = = = = =

A2 Practical Paper 5

  • General uncertainty, \(\Delta x = \dfrac{1}{2} (x_{max} - x_{min})  \)
  • Absolute unc. gradient, \(\Delta m = | m_{best} - m_{worst} |  \)
  • Absolute unc. y-intercept \(\Delta C = | C_{best} - C_{worst} |  \)
  • General log uncertainty, \( \Delta log_a (x) = \dfrac{1}{ln(a)} \left(\dfrac{\Delta x}{x} \right) \)
  • Absolute uncertainty of lg, \( \Delta lg (x) = \dfrac{1}{ln(10)} \left(\dfrac{\Delta x}{x} \right) \)
  • Absolute uncertainty of ln, \( \Delta ln (x) = \dfrac{\Delta x}{x} \)

A2 Ch12 Circular Motion

  • Arc length, \(s = r \theta \) (definition of radian)
  • Angular velocity, \( \omega = \dfrac{\Delta \theta}{\Delta t} = \dfrac{2 \pi}{t} =2 \pi f \)
  • Average speed or linear/tangential velocity, \(v = r \omega \)
  • Period of revolution, \(T =  \dfrac{2 \pi}{\omega} = \dfrac{2 \pi r}{v} \)
  • Centripetal acceleration, \(a = vw = r \omega^2 = \dfrac{v^2}{r} \)
  • Centripetal force, \(F_c = ma = mr \omega^2 = \dfrac{mv^2}{r} \)

 A2 Ch13 Gravitation / Gravitational Fields (G-field)

  • Gravitational force of attraction, \( F = \dfrac{GMm}{r^2} \)
  • G-field strength, \(g = \dfrac{GM}{r^2} \)
  • Gravitational potential, \( \phi = - \dfrac{GM}{r} \) 
  • G-potential energy, \(E_g = m \phi = -\dfrac{G Mm}{r} \)
  • Orbital velocity, \( v = \sqrt{ \frac{GM}{r} } \)
  • Orbital period, \(T = \dfrac{2 \pi r}{v} = 2 \pi \sqrt{\frac{r^3}{GM}} \)
  • Escape velocity, \(v_{escape} = \sqrt{\frac{2GM}{R}} \)

A2 Ch14 Temperature & Thermal Properties

  • Conversion: T/K = T/°C + 273.15 
  • Heat energy to raise liquid temperature, \(Q = mc \Delta \theta + Q_{lost}\)
  • Energy supplied by heater, \(Q = VIt \)
  • Internal energy, \(U = \text{sum of random distribution of K.E. and P.E of molecules}\)
  • Change in internal energy, \(\Delta U = q + W \)
    where +q is heat supplied to system, +W is work done on system (V decrease).
  • Internal energy of ideal gas, \(U = E_k = \frac{3}{2} kT \) (no potential energy)

 A2 Ch15 Ideal Gases

  • State for ideal gas \(PV = nRT = NkT\)
  • Amount of gas (mol), \(n = \frac{\text{Number of Particles}, N}{\text{Avogadro Constant}, N_{A}} \) 
  • Boltzmann constant, \(k = \frac{\text{Molar gas constant}, R}{\text{Avogadro constant}, N_A}\)
  • Boyle's Law \( P \propto \dfrac{1}{V} \) (constant T)
  • Charles' Law \(V \propto T\) (constant P)
  • Pressure Law \(P \propto T\) (constant V)
  • Combined laws \(\frac{PV}{T} = constant \)

 A2 Ch16 Thermodynamics

  • Pressure of gas \( P = \dfrac{1}{3} \left(\dfrac{Nm}{V}\right) \langle c^2 \rangle = \dfrac{1}{3} \rho \langle c^2 \rangle \)
    NOTEm is mass of a single particle!
  • Kinetic energy of gas molecule \(\langle E_k \rangle = \frac{1}{2} m \langle c^2 \rangle = \frac{3}{2} kT \)
  • Internal energy of ideal gas, \(U = E_k = \frac{3}{2} kT \) (no potential energy)

 A2 Ch17 Oscillations / Simple Harmonic Motion (SHM)

  • Angular frequency, \( \omega = \dfrac{2 \pi}{T} = 2 \pi f \)
  • Period of a spring, \(T = 2\pi \sqrt{\frac{m}{k} } \)
  • Period of a pendulum, \(T = 2 \pi \sqrt{\frac{l}{g} } \)
  • SHM acceleration, \(a = -\omega^2 x \)
  • Max acc. at max displacement (x=A),  \(a = -\omega^2 A \)
  • SHM velocity, \(v = \pm \omega \sqrt{A^2 - x^2} \) 
  • Max speed at equilibrium (x=0), \(v_{max} = \omega A\)
  • E.g. if displacement is \(x = A \sin \omega t \) then velocity is \(v = \omega A \cos \omega t \)
  • Total energy \(E_T = \frac{1}{2} mv^2 + \frac{1}{2} kx^2 \)
  • Trigonometric identity \( \sin^2 \omega t + \cos^2 \omega t = 1\)

A2 Ch18 Electric Fields (E-field)

  • Constant \(k = \dfrac{1}{4 \pi \epsilon_o} \) 
  • Electric potential (J/C), \(V = \dfrac{kQ}{r} \)  
  • E-field strength, \(E = - \dfrac{dV}{dr} = \dfrac{kQ}{r^2} \)
  • E-field parallel plates, \( E=\dfrac{F}{Q} = \dfrac{V}{d} \)
  • Electric force \(F_e = qE = \dfrac{kQq}{r^2} \) 
  • E-potential energy, \( U = -\int{F_{e} \; dr} = \dfrac{kQq}{r} = qV \) 
  • Work done (J) on charge, \(W = Fd = \Delta U = q \Delta V\)
  • Uniform E-field strength, \(E = - \text{potential gradient} = - \dfrac{dV}{dr} =  - \dfrac{\Delta V}{\Delta x} \)

A2 Ch19 Capacitance

  • Capacitance (F), \(C = \dfrac{Q}{V} \)
  • Combined Parallel Capacitance, \( C = C_1 + C_2 + C_3 + ... \)
  • Combined Series Capacitance, \( C = \left( \dfrac{1}{C_1} + \dfrac{1}{C_2} + \dfrac{1}{C_3} + ...\right)^{-1} \)
  • Energy stored in capacitors, \( E = \dfrac{1}{2} QV = \dfrac{1}{2} CV^2 \) 
  • Current (A), \(I = \frac{total \; charge \;}{time \; taken}\ = \dfrac{Q}{t} \) 
  • Discharging capacitor charge, \(Q = Q_o e^{-\frac{t}{RC}}  \)
  • Charging capacitor charge, \(Q = Q_o (1 - e^{-\frac{t}{RC}} )  \)

A2 Ch20 Magnetic Fields & Induction

  • Field from a straight wire, \(B = \dfrac{\mu_o I}{2 \pi r} \) 
  • Field inside solenoid, \(B = \dfrac{\mu_o N I}{L} \)
  • Force on wire in field, \(F = BIL \sin \theta\)
  • Force per unit length between two wires, \(\dfrac{F}{L} = \dfrac{\mu_o I_1 I_2}{2 \pi x} \)
  • Force on charged particle, \(F = Bqv \sin \theta \)
  • Hall voltage, \(V_H = \dfrac{BId}{nAq} = \dfrac{BI}{ntq} \)
  • Current (A), \(I = \frac{total \; charge \;}{time \; taken}\ = \dfrac{Q}{t} = nAvq \) 
  • Magnetic flux (Wb), \( \Phi = BA\)
  • Induced e.m.f, \(E = Blv = B\dfrac{dA}{dt}\)
  • Faraday's Law \(E = - \dfrac{d \Phi}{dt} = -\dfrac{\Delta N \Phi}{\Delta t} \)

A2 Ch21 Alternating Currents (AC)

  • Root-mean-square current, \(I_{rms} = \frac{I_o}{\sqrt{2}} \)
  • Root-mean-square voltage , \(V_{rms} = \frac{V_o}{\sqrt{2}} \)
  • Max power, \(P_{max} = I_o V_o \)
  • Average power, \(P_{avg} = I_{rms} V_{rms} = \frac{1}{2} I_o V_o \)
  • Oscillating current. \(I = I_o \sin (2 \pi f t) = I_o \sin \omega t \)
  • Oscillating voltage, \(V = V_o \sin (2 \pi f t) =  V_o \sin \omega t \)
  • Oscillating Power, \(P = IV = \dfrac{V_o I_o}{2} [1 - \cos(4 \pi f t)] \)
  • Ideal transformer \( \dfrac{V_s}{V_p} = \dfrac{N_s}{N_p} = \dfrac{I_p}{I_s} \)

A2 Ch22 Quantum Physics

  • Energy of a photon, \(E = hf = \frac{hc}{\lambda} \)
  • Max k.e. of photoelectrons \(E_{K(max)} = hf - \phi \) 
  • Radiation intensity \( = \dfrac{hfN}{At}\) so \(I \propto f_{photons} N_{photons}\)
  • Work function energy, \(\phi = hf_o = \frac{hc}{\lambda_o} \)
  • Threshold frequency, \(f_o = \frac{\phi}{h} \)
  • Threshold wavelength, \(\lambda_o = \frac{c}{f_o} \)
  • De Broglie wavelength, \(\lambda = \frac{h}{p} = \frac{h}{mv} \)
  • Emitted photon energy, \(\Delta E = E_1 - E_2 = hf \)

 A2 Ch23 Nuclear Physics

  • Energy released. \( \Delta E = (\Delta m) c^2 \)
  • Mass excess = mass (in u) - nucleon number
  • Number of nuclei, \(N = N_o e^{\lambda t} \)
  • Radioactivity, \(A = A_o e^{-\lambda t} = \frac{dN}{dt} = - \lambda N \)
  • Half-life duration, \(t_{1/2} = \dfrac{\ln 2}{\lambda} =  \dfrac{0.693}{\lambda} \)
  • Mass, \(m = \text{moles} \times \text{molecular weight} \)
  • Number of particles, \(N = \text{moles} \times N_A\)  

A2 Ch24 Medical: Ultrasound

  • Acoustic impedance, \(Z = \rho c\)
  • Intensity reflection coefficient \( \dfrac{I_R}{I_O} = \dfrac{(Z_1 - Z_2)^2}{(Z_1+Z_2)^2} \)
  • Wave intensity in material, \(I = I_0 e^{-\mu x} \)
  • Decibel (dB) = \(10 \log_{10} \left( \dfrac{I_2}{I_1 } \right) \)

A2 Ch24 Medical: X-Ray

  • X-ray photon max frequency \(hf_{max} = eV \)
  • X-ray attenuation \(I = I_o e^{-\mu x} \)
  • Decibel (dB) = \(10 \log_{10} \left( \dfrac{I_2}{I_1 } \right) \)

A2 Ch25 Astronomy & Cosmology

  • Radiant flux intensity, \(F = \dfrac{L}{4 \pi d^2} \)
  • Wien's blackbody radiation, \(\lambda_{peak} \propto \dfrac{1}{T} \)
  • Stefan-Boltzmann's stellar radii, \(L = 4 \pi \sigma r^2 T^4\)
  • Doppler Shift \( \dfrac{\lambda_{star}}{\lambda_{lab}} = \dfrac{v}{c} \)
  • Hubble's Law \( v = H_0 d\)

 Jump to sections:
[AS Chapters][A2 Chapters]


 =================


Discontinued Chapters:

A2 Communications

  • Bandwidth \(= (f_{c} + f_{s}) - (f_{c} - f_{s}) = 2 f_s \)
    NOTE: Maximum frequency of signal = \(f_s\)
  • Bitrate = sample rate × bit depth
  • Attenuation (dB) = \(10 \log_{10} \left( \dfrac{P_1}{P_2} \right) \)
  • Gain (dB) = \(10 \log_{10} \left( \dfrac{P_{out}}{P_{in} } \right) \)

A2 Electronics (Op-Amp)

  • Gain, \(G = \dfrac{V_{out}}{V_{in}} \)
  • Output voltage, \(V_{out} = G (V_{+} - V_{-}) \)
  • Voltage gain (inverting), \( \dfrac{V_{out}}{V_{in}} = -\dfrac{R_F}{R_{in} }\)
  • Voltage gain (non-inverting), \( \dfrac{V_{out}}{V_{in}} = 1 + \dfrac{R_f}{R_{in} }\)

    Tags

    m18p5 (1) m20p5 (1) m21p5 (2) m22p5 (1) P3Q1 (1) P3Q2 (1) P5Q1 (3) P5Q2 (19) Paper 1 (3) Paper 3 (2) Paper 5 (23) s17p5 (1) s19p5 (1) s20p1 (2) s20p5 (2) s21p5 (1) s22p5 (2) sp22p5 (1) w10p5 (1) w11p5 (1) w16p5 (1) w17p5 (2) w18p5 (1) w19p5 (2) w20p1 (1) w20p3 (2) w21p5 (1)

    Popular Posts